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a b s t r a c t

The governing equations of coupled thermoelastic problems are established for out-of-

plane vibration of a circular plate. The analytical expression for thermoelastic damping

is obtained. Then the thermoelastic damping is studied under different environmental

temperature, plate dimensions and boundary conditions.
1. Introduction

Micro-scale mechanical resonators have high sensitivity as well as fast response [1,2] and are widely used as sensors and
modulators [3,4]. It is necessary to know how the parameters affect their physical and mechanical behaviors. For
resonators, it is desired to design and construct systems with loss of mechanical energy as little as possible. Unfortunately,
it has been consistently observed that there exists energy dissipation that increases with size decreasing significantly –
even when made from pure single-crystal materials [5]. Many researchers have discussed different dissipation mechanisms
in MEMS [6–9], such as doping-impurities losses, support-related losses and thermoelastic damping, as well as the
radiation of energy away from the resonator into its surroundings.

Thermoelastic damping is an inherent energy dissipation mechanism in micromechanical resonators. Thermoelastic
damping arises from thermal currents generated by contraction/extension in elastic media. The bending of the reed causes
dilations of opposite signs to exist on the upper and lower halves. One side is compressed and heated, and the other side is
stretched and cooled. Thus, in the presence of finite thermal expansion, a transverse temperature gradient is produced. The
temperature gradient generates local heat currents, which cause increase of the entropy of the reed and lead to energy
dissipation. The temperature across the reed equalizes in a characteristic time tR, while the vibration frequency of the reed
is o. In the low-frequency range, i.e., tR5o�1, the vibrations are isothermal and a small amount of energy is dissipated.
On the other hand, for tRbo�1, adiabatic conditions prevail with low-energy dissipation similar to the low-frequency
range. While tREo�1, stress and strain are out of phase and a maximum of internal friction occurs. This is the so-called
Debye peak.

Zener [10,11] firstly predicted the existence of the thermoelastic damping process. Further experiments consistent with
Zener’s theory were provided by Berry [12] for a-brass, in which case the damping was measured as a function of frequency
at room temperature. Roszhardt [13] and Yasumura et al. [14] observed thermoelastic damping in single-crystal silicon and
silicon nitride micro-resonators at room temperature, respectively. Houston et al. [15] found that the internal friction
arising from thermoelastic damping is strong and persists down to 50 nm scale structures in silicon-based MEMS. Lifshitz
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and Roukes [5] studied thermoelastic damping of a beam with rectangular cross-sections, and found that after the Debye
peaks, the thermoelastic attenuation will be weakened as the size increases. In addition, Srikar and Senturia [16] studied
thermoelastic damping in fine-grained polysilicon flexural beam resonators. Wong et al. [17] considered thermoelastic
damping of the in-plane vibration of thin silicon rings of rectangular cross-section. De and Aluru [18] modified the classical
theory of thermoelastic damping for application to electrostatically actuated microstructures by taking into account
the nonlinear nature of the electrostatic force. Nayfeh and Younis [19] presented a model and analytical expressions for the
quality factors of microplate of general shapes due to thermoelastic damping. The above papers used the quasi-1-D theory
as their basis. Recently, Prabhakar and Vengallatore [20] developed a 2-D theory for thermoelastic damping in
Euler–Bernoulli beams. Since the models of Zener and Lifshitz and Roukes are now widely used to estimate thermoelastic
damping in micro-resonators, this paper will still start from the quasi-1-D theory.

This paper deals with thermoelastic damping effects on the out-of-plane vibration of circular plate resonators. Circular
plates are common elements in many sensors and resonators [21]. For example, Vig et al. [22] proposed a micro-resonator
based high sensitivity sensor and sensor array for use as infrared (IR) sensors. Microscale-circular resonators may have
thickness of 1–10mm and diameter of 100–1000mm, with resonance frequencies of the fundamental mode (thickness shear
mode) in the range of 100–1000 MHz. Although such micro-resonators are not suitable for precision frequency control
applications due to their extremely high sensitivity to mass loading, they can be used for IR detection and imaging, and for
chemical and biological agent sensing. In particular, when quartz is used as the resonator material, the temperature
dependence of the resonance frequency can be utilized to make precision thermometers [23,24].

Such resonators can be considered as a thin circular plate. So the governing equation of the thermoelastic coupling
problem for this resonator can be derived through thin plate theory in cylindrical coordinates. In the previous work [25],
we studied thermoelastic damping of the axisymmetric vibration in circular plates. This paper will study thermoelastic
damping of the vibration in arbitrary direction in circular plates.
2. Problem formulation

Consider a thin circular plate with uniform thickness h and radius a. The cylindrical coordinate system (r,y,z) is applied
to study the vibration of the circular plate, with an origin located at the center of the plate. We put the neutral surface on
the (r,y) coordinate plane, and the z-axis normal to the neutral surface. We define w(r,y,t) and T(r,y,z,t) to be the axial or out-
of-plane displacement and the temperature field, respectively. In equilibrium, the plate is unstrained, unstressed, and
keeps at the environmental temperature T0 everywhere. Assuming small strains and displacements, and considering the
Kirchhoff–Love plate theory, we can obtain the differential equation of the vibration of the microplate as [25]

Dr2
r

2wþ Dð1þ nÞaTr
2MT þ rh

@2w

@t2
¼ 0; (1)

where t is the time, r, n and aT are the density, the Poisson ratio and the coefficient of thermal expansion, respectively,
D=Eh3/[12(1�n2)] is the plate flexural rigidity, in which E is the Young’s modulus; MT=(12/h3)

R
�h/2

h/2Wz dz is the thermal
moment, in which W=T�T0 is the temperature increment; r2 is the Laplace operator in the polar coordinate system, as is
expressed in the following:

r2
¼
@2

@r2
þ

1

r

@

@r
þ

1

r2

@2

@y2
: (2)

The thermal conduction equation containing the thermoelastic coupling term has the following form [25]:

kr2Wþ k @
2W
@z2
¼ rcv

@W
@t
� bT0z

@

@t
ðr

2wÞ; (3)

where cv is the specific heat at constant volume, k the thermal conductivity and b=EaT/(1�2n) the thermal modulus.
We plan to formulate and solve the thermoelastic coupling problem using the standard approach as was used by Lifshitz

and Roukes for deriving thermoelastic damping in a beam resonator [5]. So we make some simplification in the thermal
conduction equation. Noting that thermal gradients in the plane of the cross-section along the plate thickness direction are
much larger than gradients along the radial direction, we can ignore the termr2W in the thermal conduction equation. That
is to say, the thermal conduction equation can be simplified as

k @
2W
@z2
¼ rcv

@W
@t
� bT0z

@

@t
ðr

2wÞ: (4)

In summary, we can get the governing equations of this problem composed of Eqs. (1) and (4).
In general, the elastic and thermal properties of silicon are temperature dependent. However, the temperature change

associated with thermoelastic vibration is known to be small (51 K) [17] and it is therefore reasonable to treat the
mechanical and thermal parameters as constants with values applicable to the environmental temperature T0.
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3. Solution of the governing equations

To calculate the effect of thermoelastic coupling on the vibrations of a circular plate, we solve the coupled thermoelastic
Eqs. (1) and (4) for the case of harmonic vibrations. We set

wðr; y; tÞ ¼
X1
m¼1

X1
n¼0

WnmðrÞe
iðonmtþnyÞ;Wðr; y; z; tÞ ¼

X1
m¼1

X1
n¼0

Ynmðr; zÞe
iðonmtþnyÞ; (5)

where onm is the frequency and Wnm(r)einy the mode shape of the displacement. In the notation used here, n=0,1,2,y
denoted the number of nodal diameters and m=1,2,y the number of nodal circles [26]. We expect to find that in general
the frequency onm is complex, the real part Re(onm) giving the new eigen-frequencies of the plate in the presence of
thermoelastic coupling effect, and the imaginary part |Im(onm)| giving the attenuation of the vibration.

Substituting Eq. (5) into Eqs. (1) and (4) yields the following equations:

Dr�2r�2Wnm þ Dð1þ nÞaTr
�2MT0 � rho2

nmWnm ¼ 0; (6)

k @
2Ynm

@z2
¼ ionmrcvYnm � ionmbT0zr�2Wnm; (7)

where

r�2 ¼
@2

@r2
þ

1

r

@

@r
�

n2

r2
; (8)

MT0 ¼
12

h3

Z h=2

�h=2
Ynmðr; zÞz dz: (9)

There is no flow of heat across the upper and lower surfaces of the plate, that is, qYnm/qz=0 at z=7h/2. Then, the solution
of Eq. (7) can be obtained as

Ynmðr; zÞ ¼
bT0

rcv
r
�2Wnm z�

sin ðNzÞ

N cos ðNh=2Þ

� �
; (10)

where

N ¼ ð1� iÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
orcv

2k

r
; (11)

where i is the square root of �1.
Substitution of Eqs. (9) and (10) into Eq. (6) gives

Dor
2r2Wnm � rho2

nmWnm ¼ 0; (12)

where

Do ¼ Dð1þ DDð1þ f ðonmÞÞÞ; (13)

DD ¼
ð1þ nÞaTbT0

rcv
; (14)

f ðonmÞ ¼
24

N3h3

Nh

2
� tan

Nh

2

� �� �
: (15)

Considering the limitation of Wnm(r) at the plate center (r=0), we can get the solution of Eq. (12) as

WnmðrÞ ¼ C1JnðprÞ þ C2InðprÞ; (16)

where p4=rhonm
2/Do, and the coefficients C1 and C2 are governed by the boundary conditions.

In this paper, two kinds of boundary conditions are considered. On the one hand, boundary conditions regarding
movements in the case of a clamped plate have the form of

Wnmjr¼a ¼ 0;

dWnm

dr
r¼a ¼ 0:
��

8<
: (17)

Substitute expression of deflection, i.e., Eq. (16), into the boundary conditions, i.e., Eq. (17), we have

C1JnðpaÞ þ C2InðpaÞ ¼ 0;

C1p½�Jnþ1ðpaÞ þ ðn=paÞJnðpaÞ� þ C2p½Inþ1ðpaÞ þ ðn=paÞInðpaÞ� ¼ 0:

(
(18)
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Table 1
Values of qnm (n=0, 1, 2, 3 and m=1, 2, 3) for the clamped and simply supported plates.

n Clamped Simply supported

qn1 qn2 qn3 qn1 qn2 qn3

0 10.2158 39.7711 89.1041 5.7832 30.4713 74.8870

1 21.2604 60.8287 120.0792 14.6820 49.2185 103.4995

2 34.8770 84.5826 153.8151 26.3746 80.8500 135.0207

3 51.0300 111.0214 190.3038 40.7065 95.2776 169.3954
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In order to get nontrivial solutions, the constants C1 and C2 must be nonzero. Therefore, we obtain the following
frequency equation:

JnðpaÞ InðpaÞ

�Jnþ1ðpaÞ þ ðn=paÞJnðpaÞ Inþ1ðpaÞ þ ðn=paÞInðpaÞ

�����
����� ¼ 0: (19)

The allowed value of pa may be obtained through solving Eq. (19) as pa ¼
ffiffiffiffiffiffiffiffi
qnm
p

, where the values of qnm (n=0, 1, 2, 3,
m=1, 2, 3) are listed in Table 1.

On the other hand, in the case of a simply supported plate, the boundary conditions become

Wnmjr¼a ¼ 0;

½r�2Wnm þ ð1þ nÞaT MT0�jr¼a ¼ 0:

(
(20)

According to Eqs. (9) and (10), the above boundary conditions can be changed to

Wnmjr¼a ¼ 0;

r
�2Wnmjr¼a ¼ 0:

(
(21)

Substituting Eq. (16) into Eq. (21) yields the following frequency equation:

JnðpaÞ InðpaÞ

�JnðpaÞ InðpaÞ

�����
����� ¼ 0; (22)

The solution of Eq. (22) is pa ¼
ffiffiffiffiffiffiffiffi
qnm
p

, with the values of qnm (n=0, 1, 2, 3, m=1, 2, 3) listed in Table 1.
From Eqs. (16), (19) and (22), we can obtain the mode shape of the clamped and the simply supported plate,

respectively. To provide some intuition, we plot the first few (n, m) mode shapes of a simply supported circular plate in
Fig. 1.

Now the vibration frequency of the circular plate considering thermoelastic coupling effect can be obtained as

onm ¼ p2

ffiffiffiffiffiffiffi
Do

rh

s
¼ o0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þDDð1þ f ðonmÞÞ

p
; (23)

where o0 is the eigenfrequency when thermoelastic coupling effect is ignored with the expression of

o0 ¼
qnm

a2

ffiffiffiffiffiffi
D

rh

s
: (24)

Noting that DD51 for silicon (DD=1.26�10�4 for T0=293 K), we can replace f(o) in the square root by f(o0) and expand
Eq. (23) into a series up to first order. Then Eq. (23) becomes

onm ¼ o0 1þ
DD

2
ð1þ f ðo0ÞÞ

� �
: (25)

By the convenient substitution

x ¼ h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o0rcv

2k

r
; (26)

we can easily extract the real and imaginary parts, giving the vibration frequency of the plate together with the
corresponding attenuation coefficient [5],

ReðonmÞ ¼ o0 1þ
DD

2
1�

6

x3

sinhx� sinx
coshxþ cosx

 !" #
; (27)

ImðonmÞ ¼ o0
DD

2

6

x3

sinhxþ sinx
coshxþ cosx

�
6

x2

 !
: (28)
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Fig. 1. The first few (n,m) mode shapes of a simply supported circular plate.
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Thus we arrive at an expression for thermoelastic damping in a circular plate, which is given by

Q�1 ¼ 2
ImðonmÞ

ReðonmÞ

����
���� ¼ DD

6

x2
�

6

x3

sinhxþ sinx
coshxþ cosx

 !
: (29)

It can be seen that Eq. (29) has the similar form to the expression of thermoelastic damping in the flexural-mode
vibration of a beam resonator, which was obtained by Lifshitz and Roukes [5]. And this is decided by the governing
equations.
4. Results and discussions

In this section, the dependency of Q�1 on the plate dimensions, boundary conditions, vibration modes and
environmental temperatures for silicon MEMS devices are discussed. We use experimentally reported values of the
mechanical and thermal parameters of silicon for several representative temperatures: 40, 80, 120, 160, 200, 293 and 400 K,
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Fig. 2. Thermoelastic damping (n=0, 1, 2, 3 and m=1, 2, 3) of a circular plate against thickness for (a) a clamped plate and (b) a simply supported plate. The

aspect ratio of the plate is fixed as a/h=50 and the environmental temperature is T0=293 K.

Table 2
Mechanical and thermal properties of silicon under different temperatures.

T0 (K) E (GPa) r (kg m�3) n k (W m�1 K�1) cv (J kg�1 K�1) aT (10�6 K�1) w (10�4 m2 s�1)

40 169.3 2330 0.22 3660 44.1 �0.164 356.2

80 169.2 2330 0.22 1360 188 �0.472 31.05

120 169.0 2330 0.22 876 328 �0.057 11.46

160 168.5 2330 0.22 375 456 0.689 3.529

200 166.9 2330 0.22 266 557 1.406 2.050

293 165.9 2330 0.22 156 713 2.59 0.939

400 163.1 2327 0.22 105 785 3.253 0.575

Table 3
Critical thickness hnm

c (n=0, 1, 2, 3 and m=1, 2, 3) of the clamped and simply supported plates. The aspect ratio is fixed as a/h=50. The unit of hnm
c is mm.

n Clamped Simply supported

hn1
c hn2

c hn3
c hn1

c hn2
c hn3

c

0 90.24 23.4 10.44 159.4 30.54 12.43

1 43.77 15.30 7.749 63.38 18.91 8.990

2 26.68 11.00 6.049 35.28 13.13 6.891

3 18.23 8.381 4.889 22.86 9.766 5.493
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which are shown in Table 2 [27]. Noting that, in the range of the temperature considered, temperature dependency of
thermal properties of silicon, i.e., k, cv and aT are obvious.

First we consider the case of a circular plate with fixed aspect ratio of a/h=50 under the temperature of T0=293 K. When
h is varied, a changes accordingly with h. Fig. 2(a) and (b) shows the thermoelastic damping (n=0, 1, 2, 3 and m=1, 2, 3) of
the circular plate against thickness h. Fig. 2(a) presents the values for a clamped plate and Fig. 2(b) for a simply supported
plate. The solid, dash and dot lines represent the cases of m=1, 2 and 3, respectively.

It is shown that as the thickness increases, the thermoelastic damping increases first and then decreases, and there
is a critical thickness, denoted as hnm

c, at which the maximum value of thermoelastic damping, denoted as Qmax
�1 , occurs.

Table 3 lists the values of hnm
c (n=0, 1, 2, 3 and m=1, 2, 3) for the clamped and simply supported circular plates with fixed

aspect ratio of a/h=50 under the temperature of T0=293 K. The maximum value of Q�1 are almost the same for both the
clamped plate and the simply supported plate. However, in the case of the same vibration mode, the critical thickness for
the clamped plate is smaller than that for the simply supported plate. It is shown in Table 3 that hnm

c takes the maximum
value in the case of n=0 and m=1. When n takes the same value, hnm

c takes a smaller value with larger m. Similarly, hnm
c

decreases with increases of n in the case of the same value of m. That is to say, when the plate vibrates in higher-level mode,
Qmax
�1 occurs in smaller plate.

Fig. 3 plots variation of the thermoelastic damping with n for a clamped plate with a=500mm, h=10mm and T0=293 K. It
is shown that Q�1 increases with the increase of n. However, the variation of Q�1 against m changes with n. For example, in
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Fig. 3. Variation of the thermoelastic damping with Poisson’s ratio n for a clamped plate with a=500mm, h=10mm and T0=293 K.

Y. Sun, M. Saka / Journal of Sound and Vibration 329 (2010) 328–337334
the case of n=0, Q�1 increases with m; However, in the case of n=3, Q�1 of m=2 takes the largest values among the three
lines. In the following, we take the value of n as 0.22.

When n=0, the vibration is axisymmetrical, and it has been discussed in the previous paper [25]. So in the following, we
will mainly discuss the case of nonaxisymmetric vibration. In Fig. 4(a)–(c), we plot the dependence of thermoelastic
damping on geometries and boundary conditions in three different ways: (a) Q�1 against thickness h for fixed aspect ratio
of a/h, (b) Q�1 against thickness h for fixed radius a, and (c) Q�1 against radius a for fixed thickness h. The circular plate is
clamped and simply supported, respectively. The outcome is shown for the case of a plate vibrating in the modes of (1,1),
(1,2) and (2,1), respectively.

In Fig. 4, it is shown that as the plate size increases, the thermoelastic damping Q�1 first increases and then decreases.
And there exits a critical size at which Q�1 takes the maximum value. In the case of fixed aspect ratio of a/h and fixed radius
a, the critical size is the critical thickness, i.e., hnm

c. It is shown that under the same vibration mode, hnm
c of simply

supported plate is larger than that of clamped plate. When the plate thickness is larger than the critical thickness, under the
same plate thickness and vibration mode, Q�1 of simply supported plate is larger than that of clamped plate. On the other
hand, under the same boundary conditions, the value of hnm

c increases in the sequence of (1, 2), (2, 1) and (1,1) according to
(n,m). For a plate with thickness larger than the critical thickness, under the same boundary conditions, the value of Q�1

also increases according to the sequence of (n,m) of (1, 2), (2, 1) and (1,1). We can see that the dependencies of hnm
c on the

boundary conditions and vibration modes show the same tendency as Q�1of a plate with thickness larger than the critical
thickness. In the case of fixed thickness h, the critical size is the critical radius, i.e., anm

c, and the dependencies of hnm
c and

Q�1 on a show an opposite tendency to the above cases.
The dependencies of hnm

c on the boundary conditions and vibration modes can be analyzed through the expression of
characteristic thickness. It can be seen from Eq. (24) that the frequency without considering the thermoelastic coupling, i.e.,
o0 increases with qnm, which depends on the boundary conditions and the vibration mode. In general terms, this might
cause a larger or a smaller Q�1. From Eq. (29), we can see that Q�1 takes the maximum value of Qmax

�1 =0.494DD at x=2.225.
Thus, according to Eqs. (24) and (26), we can obtain the following expression of hnm

c for the circular plate with fixed
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Fig. 4. Thermoelastic damping of the vibration modes of (1, 1), (1, 2) and (2, 1) in a circular plate plotted for different geometries under different boundary

conditions: (a) fixed aspect ratio a/h=50, change h; (b) fixed radius a=500mm, change h; (c) fixed thickness h=10mm, change a.
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aspect ratio of a/h=50:

hc
nm ¼

49;500w
qnm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3rð1� n2Þ

E

r
; (30)

where w=k/rcv is the thermal diffusion coefficient.
It is shown in Eq. (30) that hnm

c decreases with the increase of qnm. And Table 1 shows that qnm gets larger for higher
values of n and m.

Next, we consider thermoelastic damping in a clamped plate with fixed aspect ratio of a/h=50 under different
temperatures. It is known from Fig. 4 that the tendency of Q�1 for simply supported plate is similar to that for clamped
plate, so Fig. 5 only shows the case of clamped plate for the purpose of brevity. The outcomes are shown in Fig. 5(a)–(c) for
a plate vibrating in the modes of (1,1), (1,2) and (2,1), respectively. The thickness changes in the range of 0.1–500mm.

First of all, it is shown in Fig. 5 that the thermoelastic damping Q�1 under the environmental temperature of T0=120 K is
the smallest. In Gysin’s research [28], he tested the internal friction Q�1 of the first eigenmode of micro-fabricated silicon
cantilevers in the temperature range of 15–300 K and found that the thermoelastic damping depends on temperature
clearly and that thermoelastic damping is the smallest under the temperature of 20 and 125 K. Now our calculation
demonstrates that this phenomenon is also valid for higher-modes vibration of circular plates.

It can be seen from Fig. 5 that hnm
c decreases with increase of temperature. This can also be analyzed through the

expression of characteristic thickness. From Eq. (30), we can see that hnm
c increases with the increase of w. The values of

w under different temperatures are listed in Table 2. It is shown that as the temperature increases, w decreases. As a result,
hnm

c decreases.
When the environmental temperature, T0, falls in the range of 120–400 K, the variation of Q�1 against h shows the same

tendency with that under T0=293 K, and the value of Q�1 increases as T0 increases. However, Q�1 shows different tendency under
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Fig. 5. Variation of the thermoelastic damping with thickness h under different environmental temperature for modes of (a): (1, 1), (b) (1, 2) and (c) (2, 1).

The aspect ratio is fixed as a/h=50.
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40 and 80 K. It is shown that Q�1 continues increasing under T0=40 K as h increases in the range of 0.1–500mm. Under T0=80 K, Q�1

first increases quickly and then drops down slowly. According to Eq. (30), the critical thicknesses under 40 and 80 K are 16,438 and
1433mm, respectively. That is to say, hnm

c exceeds the temperature range in discussion under T0=40 K. As a result, hnm
c continues

increasing, as is shown in Fig. 5.
5. Conclusions

This paper solved the coupling equations for thermoelastic coupling problem in axisymmetric out-of-plane vibration of
circular plate and obtained the analytical expression for thermoelastic damping.

The thermoelastic damping under the environmental-temperature range of 40–400 K is investigated, and it is shown
that Q�1 depends on temperature clearly. The thermoelastic damping takes the minimum value under 120 K and it
increases with temperature under the range of 120–400 K.

In addition, the thermoelastic damping also changes with the plate dimensions and boundary conditions. There is a
critical dimension at which the maximum of thermoelastic damping occurs. For a plate with the fixed aspect ratio, the
critical dimension decreases as the temperature increases.

The results presented in this paper are based on a quasi-1-D analysis. In the case of beams, a recent 2-D analysis
has shown that the 1-D model can lead to errors of up to 80% in the estimation of thermoelastic damping [20]. Therefore,
future work need to consider 2-D analysis of thermoelastic damping in circular plates to assess the accuracy of the
results presented in this paper. However, the present quasi-1-D analysis was simple and convenient, and we can still
get some useful information from the present results and to guide the design of the microscale resonators.
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